
Java Proxy Server

Java Proxy Server

School of Computer Science,
University of Birmingham

2 May 1999

Author: Robert Neild

Degree: Electronic and Software Engineering

Supervisor: Dr T.H. Axford

Page 1

Java Proxy Server

Table of Contents
Chapter 1: Introduction...5

1.1 Project Background..5
1.2 Aim..5
1.3 What this Program Does...5
1.4 What is Presented to the User...6
1.5 Technical Detail..6
1.5 Structure of this Dissertation..6

Chapter 2: Background Material...7
2.1 What’s Already on the Market to Speed up Internet Browsing................................7
2.2 Identified Possible ways to Increase Browsing Speed..9

Chapter 3: Design...12
3.1 Target User and Environment...12
3.2 Description of Features...12
3.3 Outline of Program Operation...13
3.4 Design of Cache..14
3.5 Concurrency Problems..21
3.6 HTTP Link Parser..22
3.7 Background Update Checks Feature...23

Chapter 4: Implementation..25
4.1 Language..25
4.2 HTML Link Parser...25
4.3 Gif Filtering..26
4.4 Adapting the Standard Date class for Rfc 822...26
4.5 Persistent HTTP Connections...27
4.6 Cache Hashing Function...29
4.7 Cache Concurrency...30
4.8 Stream Copying..31
4.9 Some Implementation problems..32
4.10 Program Flow / Class Structure..34

Chapter 5: Project Management..36
5.1 Top-Down / Bottom-Up...36
5.2 Time Management..36
5.3 Conclusion..37

Chapter 6: Testing Proxy Sever Errors..38
Chapter 7: Test Results...40
Chapter 8: Analysis...43

8.1 Performance...43
8.2 Reliability..43
8.3 Un-implemented / Non working Features..44
8.4. Class structure...44

Chapter 9: Conclusions...45
9.1 Possible Extensions...45
9.2 What would I have done differently..45
9.3 Achievements...45
9.4 Overall Conclusion...46

Page 2

Java Proxy Server

Appendix A: Some Calculations..47
Appendix B: Testing the java.util.Date13 Class...48
Appendix C: HTTP Digest..49
Appendix D: Comparing the Performance of JLex and a hand written parser...................51
Appendix E: Users Guide..52
Appendix F: Running the Program from Birmingham University’s Computer Science
Department...55
Appendix G: Screen Shots...57
Appendix H: Brief Class Descriptions..58
Bibliography..59
References...60

Page 3

Java Proxy Server

Abstract

This project’s aim was to write a program to speed up Internet web browsing for the

home PC user. The solution is a Java proxy server that provides extra caching,

downloads links in the background, and filters animated GIFs down to single image ones.

A user will start the proxy server running on their home computer and set-up their

browser to send requests through the proxy server.

Acknowledgements

I would like to thank my project supervisor Dr. Axford, and also my flat mates Kris

Beaumont and Steven Beech, who’s help in testing, GUI design and functionality was

invaluable. I also got help with the format of this report from Mike Davis.

Page 4

Java Proxy Server

Chapter 1: Introduction

1.1 Project Background

More and more people are accessing the Internet from home, using a modem. However,

the speed, viewing web pages can become quite slow. This degradation in service can be

due to many different factors, some can be improved and some can’t. When downloading a

large file, the limiting factor is probably the maximum speed of the modem. However, with

web pages, there are ways to improve the perceived speed of download. This project aims

to implement some of these methods.

1.2 Aim

The main aim of this project is simply to ’Speed up Internet browsing’. The program is

targeted specifically at speeding up web page viewing times1, and improving off-line cache

retrieval hit rates. The target user will be accessing the Internet at home with a modem

using a PC.

1.3 What this Program Does

This program is a proxy server written in Java. It runs on the same computer as the

browser (which will be set up to pass all HTTP requests to the proxy server). This means

the proxy server has full control over what to do with the requests.

This program can then ;-

� Provided more intelligent caching - Cache documents specifically for when we go off-

line.

� Download links in the background - When the user is looking at a web page, the

program downloads all the pages that are linked to the page. This makes more efficient

1 The time it takes from typing a URL into a browser, until the time the web page is completely visible
in the browser.

Page 5

Java Proxy Server

use of bandwidth.

� Filter animated GIFs to single image ones - This reduces the amount of information that

has to be downloaded.

1.4 What is Presented to the User

There is only a minimal GUI to this program so it doesn’t get in the way

of the browser. The window has a few labels to give the user some

information on what is going on, and there are pull down menus to

select cache management, configuration dialogs etc.

1.5 Technical Detail

The implementation of this project required a lot of low level technical detail, such as

HTTP, Java threads, and the format of GIF files. Some detail I have not included because

it was not necessary, as I have tried to write at as high a level as possible throughout this

report. However, I have had to include a reasonable amount of HTTP. To help the

uninformed reader I have included a small HTTP digest in the appendixes.

1.5 Structure of this Dissertation

Chapter 1 - This introduction.
Chapter 2 - Some background research, investigation and ideas.
Chapter 3 - Higher level design of the program
Chapter 4 - Implementation
Chapter 5 - How I managed this project
Chapter 6 - Results from testing the proxy server
Chapter 7 - Speed test results
Chapter 8 - Analysis of program and results
Chapter 9 - Conclusions
Appendixes
Bibliography
References

Page 6

Illustration 1: Main

GUI

Java Proxy Server

Chapter 2: Background Material

2.1 What’s Already on the Market to Speed up Internet
Browsing

When starting any project it is helpful to take a moment to look at similar products on the

market. This can ;-
� Identify gaps in the market.
� Gauge other programs performance, providing a benchmark for your own.
� Identify some popular features that your product should implement.
� Identify some desirable features that your product could implement.
� Helps clarify who your target user is.
� Become more familiar with the general field.

There are various types of program available that can help speed up web browsing, and I

took a brief look at them ;-

Proxy Servers

There are a few public domain proxy servers available, although not nearly as many as

actual web servers. The most popular is SQUID[2], which is developed with much the

same methodology as the Apache web server[8]. It’s advantages are;-
	 Free to download.

 Source code is available.
� Runs on many systems.
� Extremely stable.

It can speed up browsing, just by providing an extra layer of caching on top of the browser

cache. However, it has it’s problems;-

 Doesn’t know when off-line, so can’t tailor cache hitting.
� Doesn’t cache some documents at all i.e. cookied2 requests.
� Programmed, assuming a permanent connection to Internet.

2 HTTP cookies are a mechanism for maintaining state between clients and servers. A HTTP request,
that contains a cookie, is routinely not cached because the important stateless nature of HTTP requests
(a URL always returns the same document) is lost.

Page 7

Java Proxy Server

Improved Browsers

Early browsers e.g. Netscape Navigator 33 (and earlier) didn’t have a concept of off/on-line

Internet access and assumed a permanent connection. They are improving though, with

Channels being invented, where a chunk of information can be downloaded in one go for

off-line browsing, and they are improving in the amount of information they cache for off-

line access. Some problems with browsers though are;-

� Channels are effectively useless, with the balance between content size and download
time difficult to weigh.

� Caching seems inconsistent. You can look at a site, go back to it a minute later when
off-line and it is no longer available to you ?

� Limited cache Control. Especially in Netscape, the cache can’t be viewed at all.

Prefetch Link Downloaders

These programs use a technique called ’prefetching’. While a person is on-line and reading

a web page, these programs work away in the background downloading all the links from

the current page they are looking at, using the spare bandwidth.

Some popular link prefetch programs I had a look at are;-
� WebEarly98 [3] - $24.95
� NetAccelerator 2.0 [1] - $29.95

3 Copyright © 1994-1997 Netscape Communications Corporation, All rights reserved.

Page 8

Illustration 2: How links are downloaded

Viewer looking
at HTML page HTML Page

IN
T

E
R

N
E

T

and downloads in the background

2) Undergrads
1) Courses

Computer Science

Home page

3) Postgrads

Cache gets links

Java Proxy Server

All of them seem to operate extremely well, however I found it annoying that they didn’t

give very verbose messages as to what they were doing. Unfortunately, all the ones I have

found cost money. They also tend to just concentrate on downloading links and offer no

improvement to off-line performance or offer other ’content filtering’ services.

Conclusions

There are some programs around at the moment that can increase browsing speed.

However, I feel there is a need to combine the functions of a few of these program into

one package and to produce a free alternative, to sometimes quite expensive, niche

products. I definitely think there is a need to redefine how caches work when off-line.

2.2 Identified Possible ways to Increase Browsing
Speed

There are many ways that I can think of to increase browsing speed. A lot of them depend

closely on the nature of the Internet and the habits of people browsing the net. There are

that;-
� The Internet changes over time. Sometimes in seconds, sometimes in months.
� People browsing the Internet tend to stop at a page for a few seconds while reading it.
� People tend to return to the same page over and over again.

These characteristics can be taken advantage off.

Extra/More Intelligent Caching

Page 9

Illustration 3: An extra cache level

Extra Cache Browser Cache
 IN

T
E

R
N

E
T

Java Proxy Server

An extra level of caching could be used as well as the browsers cache. However, the same

speed up could be done much more simply by increasing the size of the browsers cache.

Once there is an extra level of caching some extra functionality could be added to it;-
� Gui maintenance (adding/deleting/saving)
� Customised garbage collection algorithms
� Decide exactly what to cache
� Make the cache aware of off/on-line situation

Download Links in the Background

When a user is looking at a certain HTML page, the bandwidth from their computer to the

Internet is idle. This can be used up by downloading at all the links from the HTML page

they are currently looking at. When the user then presses one of the links on the page,

hopefully the page will have already have been downloaded for them.

This obviously suffers from some problems. It is impossible to predict what link the user

will click on next, so a blanket download of all links has to be done. If the number of links

on a page if high then the amount of redundant data to download, just to get the right link

can be huge.

Some people think this large waste of Internet bandwidth is ’anti-social’ and if everyone

was doing it, the Internet could be brought to it’s knees.

Advert Filtering

As the Internet becomes more and more commercialised, sites are starting to show more

adverts. These can be quite large, annoying to look at, and take time to download.

It would be nice if these adverts could be blocked from downloading. This can be quite

complicated because adverts have to be distinguished from normal graphics.

Page 10

Illustration 4: Typical advert

Java Proxy Server

Adverts could be distinguished by using AI, a list of blocked adverts etc.

Background update Checks

This is quite an interesting feature that hasn’t been implemented in other programs as far as

I know.

A browser occasionally checks to see if a file in it’s cache is up to date by sending a

request to the server where the file originally came from. Unfortunately, some browsers

generate these requests even when they are off-line, and when on-line, the browser has to

wait for the response from the remote server before proceeding. It would be better if these

checks could, somehow, be done in the background and handled better.

Page 11

Java Proxy Server

Chapter 3: Design

3.1 Target User and Environment

Through my research I have identified a need for a program to speed up Internet browsing,

that is free, and targeted to the individual user with a temporary connection to the Internet.

The user will be expected to be using a conventional home PC with a modem connection

to the Internet.

I have felt it necessary to narrow down the above statement, to make development and

implementation easier and more realistic, given time constraints. These specifications are;-
� Home PC with at least an Intel Pentium processor (or clone).
� At least thirty two Megabytes of RAM.
� A few hundred Megabytes of free hard disk space.
� Modem to ISP, connection speed of 33kbs to 56kbs.

3.2 Description of Features

I have chosen the following features to implement in this program;-

Caching, and a GUI maintenance window

The program will have its own cache, and a cache GUI to delete and view

entries in that cache.

Prefetch links

A record of the last HTML to be downloaded will be stored, and all the
links from that page downloaded in the background.

Background update checks

Filter animated GIFs to be single image GIFs

These features were chosen because they were thought to provide the best Internet speed

up, to implementation difficulty, ratio.

Page 12

Java Proxy Server

The decision to filter GIFs was though to be a good way to try and filter adverts. It was

thought to be too hard to identify with much certainly what are adverts on a page and

what aren’t, but I have noticed that a lot of adverts are animated GIFs. The decision to just

download the first image in an animated GIF, stops the full advert downloading but also

allows you to get an idea what the picture should look like.

Hopefully non-advert, animated GIFs being changed to single image ones shouldn’t have a

detrimental affect on a web page as the idea behind an animated GIF can still be seen.

3.3 Outline of Program Operation

The program will listen for connections from the browser on a specified port. Although it

might be thought that when running on a single computer, there would only ever be one

connection from the browser to the proxy server, this is not so. Most browsers will make

as many as four connections to a proxy server. This is used to compensate if one of the

connections is slow, and to allow for slow servers. Because of this, the proxy server must

service more than one connection at once. The only way to do this efficiently is to use

threads. Each thread servicing one connection.

Every time someone connects to the port a thread is spawned off. The thread will then

service that connection, accessing the cache and Internet as needed.

Web servers, that use a similar technique, have to be careful that they don’t spawn off too

many threads at a time. This is not deemed to be a problem with this program as only one

browser should be accessing it at a time.

Web servers, also tend to create a ’pool’ of threads when they start. Every time a

connection comes in it is allocated a thread, and when the connection finishes the thread

returns to the pool. It does this because the continued creation of threads can be a slow

process.

Page 13

Illustration 5: Thread servicing

Thread

Thread

Thread

from browser Listening
Port

Thread

Browser

Proxy Server
Connections

Java Proxy Server

I have decided that using a pool of threads is not necessary for this program. This is

because this program will hopefully be using persistent connections to the browsers. This

should mean that connections to the browser can remain connected for a long time, and

the number of threads that needs to be created reduced.

3.4 Design of Cache

The program will provide an extra level of caching. This on it’s own will not speed up

Internet browsing much, as the same thing could be achieved by increasing the browser

cache. As a convenience the cache will be able to be viewed and maintained from a GUI

window.

The main advantage of providing another level of caching is that is can be made aware of

whether the user is off/on-line and tailor whether certain requests will hit the cache or not.

A cache is also needed for the prefetch link downloading feature.

The following table outlines whether certain types of requests should try and check the

cache before going out on to the Internet;-

Page 14

Illustration 6: Design of

Cache Maintenance GUI

Add

Delete

Save

Info

CACHE
VIEW

Java Proxy Server

HTTP Request Hits cache while on-

line

Hits cache while off-line

Contains a cookie4 no yes

POST5 no yes

Contains a ’Pragma: no-cache’6 no yes

These types of requests aren’t cached by normal proxy servers or browsers, because

cookies and POSTs can result in different information being returned from the server for

the same URL, and the ’no-cache’ element specifically tells us not to look for the URL in

the cache. However when off-line getting the response from the cache is better then

nothing at all.

Where to Store the Cache

There are three main places that could be used to store the cache;-
 In memory
! On disk
" Both

The problems with storing the cache just in memory, is that is is restricted to a certain size,

probably a few Megabytes. This will not be enough. The advantages with memory storage,

however, are very quick access and transfer times.

Storing the cache on disk has the advantage of almost unlimited cache storage space. In

practice it will probably not want to be greater than several Megabytes. The disadvantage

with disk storage, is access and transfer times. However, since we are restricting the

program to use Internet connections of 56kbs, the speed of most hard disks should be

more than ample.

The best of both memory and disk storage can be achieved by using both. On

4 "HTTP Cookies are a mechanism for maintaining state between client and origin servers. They allow
the server to issue a "token" to the client, which the client will send to the server on every subsequent
request."[4].

5 POST commands, request a certain URL but also passes extra data to the server.
6 The ’Pragma: no-cache’ directive specifically tells any intermediate servers not to use there caches for

that particular request. Usually associated with browsers refresh buttons.

Page 15

Java Proxy Server

consideration the program will not use this because the added complexity of tying to co-

ordinate, what is effectively two caches, was not deemed to have an equivalent speed

benefit. This conclusion was arrived at because it was thought the transfer speeds of hard

disks, for single users, are probably more than enough for browsers to handle. Also, the

overhead of checking both memory and disk caches would be too high.

How to Store Cache on Disk

Storage of the cache on disk can be done in a few ways ;-

The most obvious way is to store cached files under a filing system directly relating to it’s

URL. So, all the hosts from a certain domain would be stored under a top level directory

with the same name as the host. For example, the two URLs;-

www.cs.bham.ac.uk/manual/index.html

www.cs.bham.ac.uk/manual/pic.gif

would be stored as files called ’index.html’ and ’pic.gif’, under a directory called ’manual’,

and a top level directory called ’www.cs.bham.ac.uk’.

This method was used in the first Web server, CERN httpd[5]. The advantages of this

storage scheme;-
Simple to implement.
$ Files from the same host are all stored under the same directory.

However the performance of this caching system is quite slow. The top level directory will

tend to fill up with a lot of sub directories, one for every host that has cached files. This

means every time a file is retrieved from the cache, because of the way filing systems

Page 16

Illustration 7: Cache storage

example

index.html pic.gif

manual

www.cs.bham.ac.uk

Java Proxy Server

work, the top level directory has to be sequentially searched for the correct directory. If

this search has to go through hundreds of entries to find the correct one, it can become

slow.

It also has to be checked that all the characters in the URL are supported on the

underlying filing system. If not, then they will have to be substituted somehow.

A better way to store cached files is using a hashing code.

This method changes the URL that we want to store, into a code, using a hashing function.

This code is then sectioned up into a few parts. The first part

gives the name of the top level directory where it will be stored, the second part the name

of the next level directory, and the last part becomes the name of the actual file.

This method is used by most browsers and proxy servers. Evaluating this method;-

Advantages

% A fixed directory structure can be made when the program is run for the first time, to

save making them later.

& Cached files are always distributed evenly through out the filing system making file

access fast.

Disadvantages

Page 17

Illustration 8: Hash function

www.host.com/file
www.rob.co.uk/abc
www.rob.co.uk/abcd

A041DF
DFD3B2
5F615F

Illustration 9: Example

of storing file 0A07B4

0A

07 08

B4

...

...0B

Java Proxy Server

' Files from the same host aren’t stored together.

(Hashing functions are generally one way only i.e. It is impossible to go from a hashing

code back to the original URL. This means identifying where a given file comes from is

impossible.

) The same hashing code can be produced from two, or more, different URL. This is a

clash and has to be detected and handled.

I have chose to use hashing code storage method because of the advantages listed above.

It was thought, not to be that much harder to implement than the direct URL to file system

mapping.

Design of Cache Table of Contents

To overcome some of the problems from using the hashing code storage method, I have

decided to keep a table of contents for the cache. This table will be kept in memory and

saved to disk when the program is stopped.

Unfortunately, at a certain cache size the table of contents will become too large to fit into

memory. This imposes a maximum size on the cache, but it is not thought that this will

become a problem (see appendix A for the rough calculation).

The advantages of using a table of contents are;-
* Enable the size of the cache to be known almost instantly - Just add up all

the sizes in the contents.
+ Keeps count of number of files in cache - Just add all up the number of

records in the contents.
, Simplifies the task of garbage cleaning7.
- Could help solve hash collision (see below).

The table of contents will need to store under a particular URL;-

1. Filename (based on hash code)
2. File size
3. Last access count

7 Garbage cleaning is the process that is done occasionally on the cache to delete out excess files, so it
doesn’t become too large.

Page 18

Java Proxy Server

A major advantage of having a table of contents is that it can help solve cache collisions,
because the filename that is stored for a particular URL doesn’t necessarily have to be the
original filename that the hash code generator produced. If there is a clash then the
filename could just be modified slightly by adding a character onto the end of it until no
disk filename clash is found.

Cache Garbage Cleaning

The cache will obviously keep getting larger and larger as files are added to it. At some

point files will have to be deleted from it. There are three issues to consider when doing

this;-

1. What files do we delete ?
2. When will these files be deleted ?
3. How to safely delete files from a concurrent system. (This is dealt with in

another section)

1) When there a lot of files in the cache, how do we decide what files to delete ?

Possible methods could be to ;-
. Delete files from the cache at random.
/ Clear the cache every time the program starts.

However, these methods aren’t very efficient.

What is needed is an algorithm that deletes the cached files that probably will not be used

in the future. The goal being to optimise disk space usage while keeping the cache hit rate

as large as possible.

There are various algorithms that could be used;-

0 LRU (Least recently used) algorithm. When someone is browsing the Internet, is is

Page 19

Illustration 10: Clashed URLs being stored in contents table

A041DFwww.bham.com/file
www.ox.co.uk/abcd A041DF

in contents table
Different URLs producing the same

www.bham.com/file

www.ox.co.uk/abcd

TABLE OF CONTENTS

Clashed

filename:A041DF

Character addedfilename: A041DF

file size
last access

file size
last access

x
codes represented

hash code

Java Proxy Server

statistically more probable that they will return to sites they have just visited, rather

than sites visited days ago. Because of this, we could prefer to delete the files in the

cache that have not been accessed for the longest time.

1 Weighted LRU for recent accesses. The above algorithm may give a false sense of how

popular a cached file is. It is possible that a certain file may only be looked at once and

never again. Implementing this algorithms is the same as the basic LRU, but having a

weighting that prefers files that have had many accessed.

2 Weighted LRU for size. If there is a very large file in the cache, and deleting that file

means that many other files wouldn’t have to be deleted, then it might be prudent to use

the LRU algorithm with an add in factor that prefers larger cache entries.

The algorithm I have decided to use is the basic LRU. This is because the effectiveness of

the other algorithms is debatable, and the complexity of them I think is completely

unjustified over the simplicity of LRU.

2) When will files be deleted. A decision needs to be made when files are deleted;-

3 A file could be deleted whenever a file is added. This would means the effort at deleting

files is spread out over time.

4 Or, files could be deleted in a clump at certain time intervals. This means that the effort

to delete files would be concentrated into a small, infrequent time periods.

I have chosen the second scheme. This is because the contents table will probably have to

be processed to sort the cached files into the order of last access. This sort could take

some time so it is better to do this infrequently.

Because of the bursty nature of Internet requests it is also likely that if the garbage clean is

done in a burt, it is probable that is will occur at a time when the proxy server is not doing

anything. Of course, it is possible that two bursts may collide. This could be alleviated by

giving the garbage clean process a much lower priority,

Page 20

Java Proxy Server

3.5 Concurrency Problems

There are some major concurrency problems within a program of this type. The main one

is with the cache control. Items can be deleted from the cache at any time by the garbage

cleaning thread, deleted by the user, or added by a servicing thread. This produces obvious

problems if an item in the cache is deleted while it is being read by a another thread etc.

Some Solutions to this problem;-

1) Lock cache - The easiest would be to allow only one thread to access the Cache at a

time. This would prevent all concurrency problems but would have an obvious

performance overhead as threads would spend time waiting to get access to the cache.

2) No locking - Another solution, would be to have no locking at all. Initial

experimentation with this method showed that this is a surprisingly acceptable method.

The chances of a clash are very small. When a clash is detected it could be handled quietly

e.g. by cutting the connection to the browser in mid flow, if the cached file that it was

reading from is deleted from ’under’ it. This would result in the browser not showing a

certain picture etc. but would only happen very occasionally.

3) Record locked URLs - However the solution I have chosen to adopt it to somehow

’lock’ URLs, while they are being accessed. There are many advantages to this;-

5 It allows the cache to be accessed by many threads at once.

6 Prevents concurrence problems.

7 Should only have a small performance overhead.

Page 21

Illustration 11: What accesses the cache

8 88 88 88 88 88 8

9 99 99 99 99 99 9
: : :; ; < < <= = =Routine cache

additons

Garbage cleaning

User deletions

DELETIONSADDITIONS CACHE

Java Proxy Server

3.6 HTTP Link Parser

For the part of the program that prefetches links in advance, is some code that is able to go

through a HTTP page and extract out all the links from it to other HTTP pages.

HTML links are in form . The program needs to

parse out the ’HREF’ element of the ’A’ tag. There may be other elements in the tag e.g.

. These extra elements need to be ignored.

The ’A’ tag has been in HTML specification since version 2.08, so it has been established

for a long time and in unlikely to change. It is possible extra elements will be added to it,

along with the HREF element that we want, so we must be careful to ignore them

properly.

8 HTML 2.0 is defined in RFC 1866

Page 22

Java Proxy Server

The state machine designed above has been made to recover reasonably from any errors in

the HTML. If in the middle of a tag some unexpected character is found, it goes to state

10 to skip that tag. When the tags terminator, ’>’, is found it recovers and starts looking

for another tag.

3.7 Background Update Checks Feature

This feature checks pages in the background. Usually a browser has a setting which tells it

when to check its copies of cached documents to see if the master copy on the Internet

web server has changed. The result of these checks is that the cached copy is up to date.

The browser has to pause to make these checks, so a way to speed up browsing would be

to ’take’ these requests off the browser and do them in the background.

Page 23

 Illustration 12: Link parser

>@?
?

ACBED@BEFHGJICKLKLF@MCBENEO
PEM

QSRCT

ACBED@BEFHUJVCPEWLB

space includes carriage return
and end of line

>

ACBED@KLB

? > X

space< A or a

Y Z [\

spaceother

>@? >@?

otherother

space Add to operation

Add to operation
=

=
space

space space

]

>@?

other

X

"

other

"

Add to value

Java Proxy Server

When the browser sends out a ’if-modified-since’ request (this is what they are called in the

HTTP request) we will intercept it and send back an immediate reply that the page is up to

date. The requests will then be put onto a first in-first out stack. A process when takes

these requests off the stack and checks them in the background. If a page is found to be

up to date then no action needs to be taken. If it is found to be out of date when a dialog

needs to be popped up to alert the user that the page they are currently looking at is old

and they need to press reload.

Page 24

Illustration 13: Netscape 3 configuration

Illustration 14: How background update checks are handled

Browser

Is URL upto date ?

Servicing

URL upto date
Thread

Background
Update thread

Removes requests from
top of que and checks Internet

Thread tells browser
immediatly, URL is upto date,

then adds request onto bottom of que

Internet

Java Proxy Server

Chapter 4: Implementation

4.1 Language

Java was decided as a language to implement this project. The main reason for this was

that a Java program would be able to run on all the operating systems that run on peoples

home PCs (Linux, Windows 95/98/NT). Java has certain other advantages;-
^ Built in thread, and thread synchronisation support
_ Easier to debug that C++
` A very stable, common, GUI

Java does have some disadvantages though;-

a The speed of Java may be a problem. Since this program doesn’t do any heavy raw
processing, I predicted that it would probably not be a major problem.

b Another problem is Java’s rather small set of features in its natively implemented GUI
(awt). The way to get around this is to use Suns package of lightweight9 GUI
components, called Swing.

4.2 HTML Link Parser

The implementation is obviously best done using a parser, and the obvious way to do this

is to use a parser generator such as Lex/Flex10. Although Flex is designed to generate a C

parser, there is a port of Flex to Java called JLex[6].

A initial generator was written using JLex and then tested. Some of the points for and

against using JLex are;-

Advantages -
c Very easy to change and modify quickly

Disadvantages -
d Perhaps slightly slower than a hand made parser

9 Lightweight Java GUI components don’t rely on the native system because Java draws the controls
itself.

10 Flex is a GNU implementation of the more restrictive Lex.

Page 25

Java Proxy Server

e Source code it produces is hard to understand

It was decided, after an initial prototype had been done in JLex, to write a parser by hand.

This was because it could be made to run faster than the JLex generated one, and have

cleaner, commented source code (see appendix D for speed testing results).

The implementation was then a simple task of writing a state machine parser that was

written according to the designed state machine.

4.3 Gif Filtering

The filtering of GIFs is mainly a technical exercise. It involves reading in a GIF file until

the end of the first image, and at that point the connection from the browser to the remote

server can be terminated.

This process is complicated by a GIF file having lots of different types of blocks in it. The

different blocks have to be partially understood by my program, as I will have to pass them

through properly. The types of blocks differ from fixed and variable width lengths. The

GIF specification documents the different types of blocks that are possible.

4.4 Adapting the Standard Date class for Rfc 822

I have included the section below mainly because I think it is interesting, but it only an

sample of many other small, lower level implementation problems.

The HTTP/1.0 standard in RFC 1945 defines the date format HTTP sources should

Page 26

Illustration 15: Filtering a GIF

H
eader

V
arious

B
locks

Im
age 2

V
arious

B
locks

Im
age 1

inator
T

erm
-

of file
Insert terminator here and cut rest

Java Proxy Server

generate, and the larger set of date formats that should be understood.

The three formats that should be understood are ;-

Sun, 06 Nov 1994 08:49:37 GMT RFC 822, updated by RFC 1123

Sunday, 06-Nov-94 08:49:37 GMT RFC 850, obsoleted by RFC 1036

Sun Nov 6 08:49:37 1994 ANSI C’s asctime() format

The only format that should be generated is the first one in the above table. After some

testing of the Java util.Date class (Appendix ?) it can be seen that Date is able to parse all

the above date formats but the format is creates is not compatable with Rfc 822.

The solution to this problem is quite simple and just requires the use of the

SimpleDateFormat class to explicitly specify the format of the date output. The result of

this is a class derives from Date but with to ’toString’ methods overwritten, called

Rfc822Date.

The testing of the Date class can be found in appendix B.

4.5 Persistent HTTP Connections

With version 0.9 and the older implementation of 1.0, HTTP has been a single request-

response connection. After the requested file has been retrieved, the server cuts the

connection. The graceful11 cutting of the connection was used to signify the end of the file.

With a HTTP/1.0 attribute ’Connection-Length’, this is no longer needed as the browser

end can be told the length of the file explicitly, before transmission.

The three way handshake, used to establish a TCP/IP connection, is quite costly so a way

was developed to ’keep alive’ HTTP connections. This allowed multiple HTTP requests to

be sent, and multiple files to be retrieved using one persistent connection.

So, how do we use persistent connection ? We have to explicitly ask for persistent

11 A TCP/IP connection can be cut gracefully, and the receiving end will know that it was done
deliberately. There are other types of connection cutting which are done if there is a time-out or error.

Page 27

Java Proxy Server

connections using a HTTP element in the request ’Connection: Keep-Alive’. This tells the

remote server to try and keep the connection alive after the requested file has been

downloaded. This is only a suggestion to the server, so the program has to be prepared for

the connection to be terminated. The server will do this if it is unable to send us the file

length12, therefor cutting the connection is necessary to tell us when transmission is over.

An important point with persistent connections is that the remote server has restrictions on

how long a persistent connection will remain idle for, before being terminated.

I have implemented persistent connections in a class that tries to hide some of the

complexity. The ’PersistentHTTPConnection’ class is constructed around a certain server.

It is then given a HTTP request and it tries to deliver it to the server it is associated with.

If it has already send a request to the server on a persistent connection, then it tries to send

the request on the already existing connection. If that fails then it ties to open another, and

if that fails then it throws an error up to the class that called it.

12 The server may not know the length of a file if it is being created dynamically using a CGI program.

Page 28

Illustration 16: Sending multiple requests

on a persistent connection

Multiple requets being sent on one connection

Internet

Multiple files being returned

Illustration 17: An example of how the PersistentHTTPConnection class works

T
IM

E

Ask for a HTTP request
to be sent

Ask for a HTTP request
to be sent

Ask for a HTTP request
to be sent

Class instance constructed
for a particular URL

Some time passes

Servicing Thread trying to
instance

so make a connection and send request

send HTTP requests

old connection

new connection

Internet

The connection times out
and the server closes it

Previously made connection is
still alive so send request on that

First use of this class instance

another
Connection has closed so open

a new connection

PersistentHTTPConnection Class

Java Proxy Server

4.6 Cache Hashing Function

As stated in the main body of this document, a hashing algorithm is integral to the caching
of URLs. The algorithm will need to take a URL and output a hashing string that can be
used to store, and access it from disk.

Format of hashing code

The format of the outputted hashing string is important, as this will be the filename of the
cached document on disk. Thus, it can only contain the set of characters that are allowed
in filenames. However, there is no definitive set, as the program can be run on many
operating systems. The safest set of characters to use is a-z and 0-9, as most file systems
should support filenames containing those characters.

Possible hashing algorithms

There are many hashing codes available. Lots of research and effort is being made to make
algorithms that are robust i.e. it is difficult to give the algorithm two different inputs that
would produce the same hash code. This is because these algorithms are used in
encryption codes. This level of security is not required in this program where speed is the
main consideration.

The most obvious algorithm is the one contained within the URL class itself. I chose to
verify this was the fastest algorithm by comparing it with another popular algorithm MD5.
This is described in RFC 1321. An implementation of MD5 in Java was found on the
Internet [7]. It keeps very closely to the RFC 1321 description.

Comparison

String Input to Hash function MD5 (ms) Java Native Hash (ms)

http://www.teststring.co.uk/robertneild/ 23 13

one two three four five six seven eight

nine test testing hash coding algorithms.

the cat sat one the mat. the cow jumped

over a moon. is the moon made of cheese

? 46 23

Page 29

Java Proxy Server

The testing results show that MD5 on average is about half the speed of the Java URL

hash method, with the speed being largely linear with input string length.

Because of the speed results it was decided to use the java native hash method. However,

taking a look into the Java class internals, the algorithm they have used to generate the

code is very primitive. Because of their implementation, it makes the likelihood of hash

collisions more probable. This is not going to be a problem because the handling of

clashes is handled well, using the cache contents table I implemented.

4.7 Cache Concurrency

Java does have some inherent methods to lock objects but this doesn’t particularly translate

to cached objects on disk well, so it will probably have to be implemented just using a list

of locked URLs. However the implementation of locking and unlocking URLs in the cache

doesn’t stop there.

What is needed is two methods that both take a URL;-

LockUrl - Checks if the URL is already in the list of locked URLs. If it is then wait until it

is removed. Then add the URL to the list of locked URLs.

UnlockUrl - Removes the given URL from the list of locked URLs.

Only one thread should be allowed access to the lockURL and UnlockURL functions at a

time. Fortunately Java has built in methods that can handle this quite simply.

Java has a ’synchronized’ key word what can be used to get an exclusive lock on the list of

locked URLs. Once in the lock it is also possible to call a ’wait’ methods that gives up the

lock and waits for some other thread to call the ’notify’ method.

Page 30

Java Proxy Server

So before any thread tries to access the cache it calls the LockURL method to lock the

particular URL it wants to access, and calls UnlockURL after it has finished.

There methods are implemented in the Cache class.

4.8 Stream Copying

After some initial testing of the program, it was found that the maximum throughput speed

of the program was very low. This was traced to the routines that copy data between

streams. They were doing this byte by byte. Some more efficient functions were needed.

These method were put into a global class, Util.

The stream copying methods are complicated because it is sometimes needed to copy data

from an input stream, coming from the Internet, to two output streams (one going to the

cache, and one to the browser). It was decided to copy to both streams concurrently, as

this allows the method to return quickly, give a quick response to the browser, and be

Page 31

Illustration 18: Flow chart of how URL locking methods work

Generate a notify event on list

Remove Lock on list

Unlock URL MethodLock URL Method

and Remove Lock

Get lock on List

Remove URL from List

Return

NO

Contains URL
and wait for a notify
Give up lock on list

Check Locked List

Get lock on List

YES

Return

Add URL to List

Java Proxy Server

more efficient.

To find an efficient method of copying, it was needed to look at the Java class

documentation. It was found that there are methods that allow the reading, and writing, of

arrays of bytes. The methods were implemented using this way.

It was needed to decide on the size of the copying array. Too large and the response to the

browser may be too slow. It was decided on a value of one thousand bytes. This was

chosen because of the speed of the connection to the Internet.

4.9 Some Implementation problems

There were many problems that were found and corrected during the implementation of

this project, and I am obviously not going to list them all here. However there were a few

that I think are both interesting and affected coding the most, that I will document.

Java Sockets

This problem was detected when upgrading the program to use persistent connections. An

important part of doing this was to find out if a certain socket was no longer valid i.e. It

had idled out and the remote server had closed the connection. There is no explicit

command to test a socket, to see if it is valid. Having some experience with sockets

programming on Unix and PC machines, using C++, I approached the problem the same

way.

When I sent the the request to the server, if the request was seemingly sent without an

error being returned, then I assumed the connection was valid and I could listen for the

response. However, I found quite often when I started listening for the response, it

Page 32

Illustration 19: One stream

in, two streams out

Browser

Cache
Internet

Java Proxy Server

returned an error saying the socket had closed. My program dealt with this assuming the

remote server hadn’t liked the request and had closed the socket on me. A HTML page

was sent back to the user to signal this to him.

After some testing I found that it was possible for Java to seemingly send data over a

closed socket without signalling an error. I am uncertain as to where the data was being

sent.

The problems was corrected by using read to test whether a socket was valid because this

seemed to return an error if the socket was invalid. To stop the read command blocking

until it received some data, before the test was done, the blocking time-out on the socket

was set very low.

Incompatibles between Java Runtime Environments

Some of my development was done on different systems, and thus on different JREs. At

one point during development the program depended on the finalise methods of my classes

being called, so that I could save the table of cache contents out to disk. This worked

reasonably well on the Solaris operating system but would only work occasionally on the

Linux operating system.

I could increase the probability of the finalise methods being run by explicitly telling the

runtime systems to do a garbage collection, and then sleeping for a while, but this still

wasn’t one hundred percent certain.

The solution to this problem was to explicitly do the cleaning up I wanted when the close

methods of the windows were run.

Page 33

Java Proxy Server

4.10 Program Flow / Class Structure

The class structure of this program is quite complex and I don’t intend to write about it in

detail. In the diagram I have only included the main classes, half of the more minor classes

have been excluded.

You can see in the figure that the program starts in a class called Main. This class contains

an instance of the GUI class, that contains some other GUI classes.

The program works by going in a spawn_threads class. It then spawns off instances of the

service_thread class for each connection. That class then manages the connection in it’s

own thread.

You can see from the diagram above that there are a lot of global classes. This is because

it is necessary to keep a lot of global information that all the threads can access. The

Page 34

Illustration 20: A simple class structure of the program

HttpHeadBrowser

HttpHeadServer

HttpHead

Rfc822Date

Spawn_Threads

Config Gui

Cache Gui

Threads

Log Gui

BackGround Checks

Cache

fhgEikjCl@gnmogEl@pJpJq@p

CacheOutputStream

CacheInputStreammm

Logs

Util

Main

Main Gui

LinkDownload

Messages

Background checks

A Service Thread

an instance in the above class
This class is contained as

KEY

Java Proxy Server

obvious example of this is the cache class, but there are a lot of other classes, like the

background check class, that can only have one instance, but all the threads need to access

it.

Page 35

Illustration 21: Simplified program flow while servicing a thread

Thread starts servicing a single
connection from the browser

Check if in cache

Check if off-line

Get HTTP response

Is a animated GIF

Send HTTP request to server

Tranfer File

Is it a if-modified since request Add to check updates thread
and send OK return to browser

Transfer file after first passing
through class to strip animation

Send message to go on-line

Returned cached object to browser

Get request from browser

YES

YES

YES

YES

Java Proxy Server

Chapter 5: Project Management

Early on in the project a specification was written. The main function of this was to make a

final decision on what features the program would implement. I found this decision very

important as it stopped me developing peripheral functions, focusing development on the

features I had initially decided upon. I think this resulted in the program having a set of

well written, reliable features rather than a lot of unreliable ones.

5.1 Top-Down / Bottom-Up

In an effort to develop the program using a top-down methodology a basic GUI was

developed early in the project implementation. It was designed to reflect the program

features that had already been decided upon in the specification.

Once that has done, I decided to do a lot of the development using bottom-up methods.

This was mainly due to me being very unfamiliar with Java and the features that I was

implementing.

For example a standalone program was written that could parse a HTML file, before the

class was actually inserted into the main program.

5.2 Time Management

Surprisingly I didn’t stray too far from the time plan I submitted at Christmas. I think this

was due to some past experience I have had with projects and making sure the timeplan

was reasonably flexible.

I ended up spending about twice as much time on implementing a basic proxy server than I

has first imagined. This was due to me not fully realising the complexity of proxy servers

and how they have to handle errors. Fortunately I was able to catch up with the time plan

by working a bit at Christmas.

The project was finished a few weeks before the inspection. This time was meant just for

testing but I found with extensive testing, some errors. I had to be careful at this point not

Page 36

Java Proxy Server

to produce a cascade of errors by changing something small.

5.3 Conclusion

The design approach I used was more bottom-up than other peoples approach. Comparing

this approach with other peoples is very interesting. I found people who had used the top-

down approach to excess, tended to have bugs in the program which were hard to track

down.

Page 37

Java Proxy Server

Chapter 6: Testing Proxy Sever Errors

This project, while mainly being concerned with speeding up web Internet access, is also a

full proxy server. The proxy server should handle all the normal errors that a regular proxy

server would. The results of the test are on the next page (page 39).

How are the Errors Handled

During the standard operation of a proxy server, due to malformed user input, or requests

that can’t be serviced, the proxy server needs to indicate back to the user why it can’t

proceed. All the basic errors, like ’host unknown’, return a suitable, simple, HTML page to

the browser. This page shows the error name, a brief description, and also a clear

indication that is was generated from the proxy server.

Server Errors

Some of the more interesting errors can happen while connecting to the server. It is

possible that ;-

r The host for a request exists, but no connection could be established to the given port.

s The host in a request exists, and a connection could be made to the given port, but the

given port isn’t a web server and no response comes back when we send the HTTP

request.

The testing confirms my program handles these conditions properly with a relevant HTML

page being returning.

Major IO Error

Very occasionally when connected to a server the connection can be prematurely

Page 38

Java Proxy Server

terminated. This can be due to a slow server. There is not much that can be done in

response to this error as no HTML page can be send to the browser. Testing confirms that

my program behaves correctly and shuts down the relevant thread and the connection to

the browser.

Page 39

Java Proxy Server

Chapter 7: Test Results

The speed testing of a program of this type can be extremely difficult due to the

changeable nature of the Internet and the dependence on a users habits. The changeability

of the Internet can be compensated for by running many tests over time and taking an

average. Below follows the results for the individual tests that were run, and what we can

conclude from each test ;-

Maximum Throughput Speed Test

This test is to check how much my proxy server, being in the way of a fast connection,

would slow the retrieval of date down. It is inevitable that downloading a large file from a

fast site though a proxy server will be slower that a direct connection.

Test description: Download of a 3 Meg text file from my Computer Science home page.
Direct browser connection: Average transfer rate = 320k/s
Through proxy connection: Average transfer rate = 43.2k/s

We can conclude from this test result that my program will not transfer data above a

maximum rate of 43k/s. Although this is disappointingly slower that the direct speed, it is

not thought to be a problem because it is a lot greater than the maximum throughput of a

modem (7k/s).

This test was run after I had performed some low level optimisation of the transfer

algorithms. This leads to me to believe the limiting factor may be Java’s speed.

Download of a large file from a slow server

This is to test that when speed is not the limiting factor, can my java proxy server keep up

with transferring a file.

Test description: Download http://www.netcolony.com/members/honeymonster/bigfile.txt - 130830 bytes
Direct download speeds (s) : 126, 165, 57. Average time = 116 seconds.
Through proxy server download speeds (s) : 72, 67, 117. Average time = 85.3 seconds.

We can conclude from this test that the proxy server, when presented with a transfer of a

Page 40

Java Proxy Server

file that is at a rate below it’s maximum rate of about 45k/s, it is able to keep up. I think we

can discount the speed of the proxy server being faster then the direct connection, in this

test, given the widely recorded transfer speeds.

Download of a web page with animated GIFs

A web page with six animated GIFs was put on a reasonable slow server

to Test if the animated GIF filter feature works and if it has any speedup.

Web page URL: http://www.netcolony.com/members/honeymonster/index.html
Direct download speed(s) : 84, 109, 131. Average = 108 seconds.
Proxy (nocache) download speeds (s) : 104, 70, 90. Average = 88 seconds.

From the results we can see there is a small speed up. There figures aren’t more impressive

because most of the time seems to be taken with looking up the IP address of URLs and

making TCP/IP connections.

Garbage Clean Speed

This test isn’t essential because hopefully the time to do a garbage clean won’t affect the

speed of the rest of the program. However, it is interesting to know as it could be a

limiting factor on the size of cache.

Cache Size Cache Max Size Number of bytes

garbage clean deleted

Garbage cleaning

time (secs)

635,445 200,000 439,245 1.08

1,026,774 1,000,000 29,776 0.558

1,006,951 1,000,000 7,536 0.088

1,027,286 1,000,000 34,944 0.550

These results are quite impressive and a lot better then expected. The speed of a clean

seems to depend more on the amount of data that has to be deleted from the cache, as then

Page 41

Illustration 22:

Animated GIF Page

Java Proxy Server

the size of cache to start with.

Background Update Check Test

Testing this feature needs to be done on a web site that I can manage, so I used my

computer science one.

A web page was loaded through the proxy server, then the ’touch’ command was run on

the files in my web page to update the file access times. When the reload button is pressed

on the browser, the browser returns immediately and after a short time a dialog pops up

saying the current page is old and that reload needs to be pressed again.

This is exactly as it should operate.

Prefetch Link Test

Testing of this feature was done on the Computer Science home pages as they are simple

and stable. Tests verify that when a HTML page is looked at, the links from it are

downloaded in the background. However, testing revealed a problem with this feature in

that if the user changes the page they are looking at, while links are being downloaded, the

links continue to be downloaded from the old page. Other than that problem this feature

works correctly.

Page 42

Java Proxy Server

Chapter 8: Analysis

8.1 Performance

The performance of the program in my eyes is ’reasonable’.

The general speed of it when working as a general proxy server is good, as long as the

maximum transfer speeds don’t reach it’s limits. The speed of accessing the cache, even

with large cache sizes of two Megabytes is very fast.

The link download, background checks and GIF filtering all work at acceptable.

I have found that as the program get larger, the speed seemed to slightly decrease. I think

this is down to the Java interpreter. It would be interesting to compare the performance of

to a similar program written in C++.

8.2 Reliability

The current reliability of this program is of some concern to me. Browsing on ’safe’

standard site, such as the Birmingham University web pages, is found to be completely

reliable after testing. When going around different sites on the Internet the program does

seem again to perform with out problem.

However, after half an hour of use, it is possible to find sites where minor ’strange’ things

happen (connection going down unexpectedly etc.). Although these problems are not

serious I am not satisfied that the program is completely full proof.

Through the experience of writing this program, I have realised that there is a need for

extensive beta testing on any program developed in this area. I believe this is due to the

various, slightly different, implementations of HTTP on different servers, and the

concurrent, multi-threaded aspects of this program.

I believe this is confirmed by the steps the people who make the Apache web server and

SQUID proxy server take to test their products.

Page 43

Java Proxy Server

8.3 Un-implemented / Non working Features

I have not finished the storage of cached files in a hierarchical directly structure, however,

I am storing them using a hashing code.

I also think there is a bug in the link downloader that keeps downloading links from a

page, even when the user has gone to another page.

Both these problems are only thought to be reasonably minor.

8.4. Class structure

The class structure of this program is a little strange, mainly because of the need for

threads to access common data. I still think that there is room for it to be improved. This

could have been done by doing a fuller, more detailed design.

Page 44

Java Proxy Server

Chapter 9: Conclusions

9.1 Possible Extensions

There is certainly some space to extend the configuration dialogs e.g. To tailor the link

download options some more. I would also like to improve the reliability of the program. I

would guess this would best be done by some beta testing.

As for major extensions to the program, it would be possible to make the program filter

out adverts more intelligently. Whether this would be done by an AI, a list, or a online

database I don’t know.

I think it would be interesting to slightly change the orientation of this program to be a

large, multi-user cache, that knows when it is off/on-line. This could be then be used by

companies that have only temporary Internet connection e.g. A LAN connected to a

modem that dials out when ever someone makes an Internet request.

9.2 What would I have done differently

One of the main problems with this project was my tendency to go for a bottom-up

implementation. Following that approach meant the upper levels of the program had to be

re-written a lot, as lower level, and other levels that depended on it, were added to it. This,

I think at the time was reasonably justifiable, because of my lack of knowledge of Java and

of the area. I found as I progressed in the project, I came across many problems I had not

foreseen. Certainly now I would be able to produce a more detailed specification and

design.

9.3 Achievements

A list of the more tangible skills I think I have gained a lot of knowledge in is ;-
t Java
u HTTP
v HTML

Page 45

Java Proxy Server

w Threads/Concurrency/Locking
x Proxy servers
y Web servers
z Hashing codes
{ Garbage cleaning

As well as these specific skills, I think the main skill I have gained experience in, out of all

the less tangible ones, is self motivation. I think for me, this was the key skill that the

whole project depended on.

When the project was started, and for the first few months, the project is exciting and

interesting to work on. However, after that period it becomes very difficult to motivate

yourself to get the project finished. I have found, with this program, that that completing

the last ten percent of the program, seemed to take at least thirty to forty percent of the

time.

I also leant ;-
| How to design a large program.
} Testing methods.
~ Customer research.
� Time management.
� Writing a large report.

9.4 Overall Conclusion

Writing this project has been hard going at times, but enjoyable. I have been surprised at

all the areas I’ve had to get involved in. The project turned out to be a lot larger than I had

imaged but I have learnt a lot or skills and methods along the way.

Whether the project turns out to be useful to someone is yet to be seem, but I sincerely

hope it will be.

Page 46

Java Proxy Server

Appendix A: Some Calculations

Calculate the approximate size of cache table of contents for
different sizes of disk cache

Disk cache size = x

Average size of files in cache = 5000 bytes

Each line in contents table contains the;-

URL Name 40 characters

Hashing code 10 characters

Size of file on disk 6 characters

Last access time 6 characters

================================

Total 62 * 2 bytes = 124 bytes

Number of files in cache = x/5000

Size of table of contents = (x/5000) * 124

Cache Size (x) 1,000,000 (1M) 10,000,000 (10M) 100,000,000 (100M)

Size of table of
contents

24,800 248,000 2,480,000

Page 47

Java Proxy Server

Appendix B: Testing the java.util.Date13 Class

The following code was used to test the java.util.Date class parsing, and the format of it’s

standard output to see if it was acceptable for this program.

import java.util.*;

import java.text.*;

class DateTest

{

 public static void main(String args[]) {

System.out.println("Started....");

System.out.println(new Date("Thu, 18 Mar 1999 11:13:17 GMT")));

System.out.println(new Date("Sunday, 06-Nov-94 08:49:37 GMT")));

System.out.println(new Date("Sun Nov 6 08:49:37 1994")));

System.out.println(new Date().toString());

 }

}

The Output of the above source code

Started....

Thu Mar 18 11:13:17 GMT 1999

Sun Nov 06 08:49:37 GMT 1994

Sun Nov 06 08:49:37 GMT 1994

Thu Mar 18 20:53:08 GMT 1999

Conclusions

The output proves that the Date class if able to parse the three formats correctly but its

output format is unacceptable as it doesn’t conform to RFC 822 which has a form;-

Sun, 06 Nov 1994 08:49:37 GMT

13 Copyright (c) 1995, 1996 Sun Microsystems, Inc. All Rights Reserved.

Page 48

Java Proxy Server

Appendix C: HTTP Digest

HTTP is a request/response protocol. A client sends a HTTP request to a server with the

server then responding with a HTTP response header, followed by the requested data

body. Although usually, the requested item is a HTML page, HTTP is not tied to this

protocol and so any type of data can be returned.

HTTP Versions

There are three HTTP versions at the moment;-

� 0.9 - Now very old and not used.

� 1.0 - The currently most popular version. Described in RFC 1945.

� 1.1 - A reasonably new version, not fully defined and just being implemented. Described

in RFC 2068.

Version 1.1 is just appearing in newer browser and servers. Unfortunately, being a new

protocol, it isn’t as stable as 1.0. Because of this, and because 1.0 offers all the

functionality I need, I have chosen only to support 1.0 in my proxy server. Version 1.1

servers will be able to understand 1.0 requests anyway.

Unfortunately, unlike some other Internet application level protocols, like FTP, HTTP is

not implemented with the same strictness. There are many different servers and browsers

in use, and they can implement very slightly different flavours of HTTP.

In particular there is some blurring between 1.0 and 1.1. The main one being persistent

connections that are widely used in 1.0.

HTTP Request Format

HTTP requests are in ASCII text form and a typical one looks like;

Page 49

Java Proxy Server

GET http://www.cs.bham.ac.uk/ HTTP/1.0
User-Agent: Mozilla/4.0
Accept: text/html

The first line in the request is the most important one, as it specifies the action we want to

the server, the URL that we want, and the HTTP version we are using.

HTTP Response Format

A typical HTTP Response looks like;-

HTTP/1.0 200 OK
Server: Apache
Date: Sun, 11 May 1997 09:30:37 GMT
Content-Size: 1000

<HTML> etc.

Again, the important line is the first one. In this case it tells us that the request was

successful and that the requested date will follow after the HTTP response header. The

end of the header is indicated by a blank line. After the blank line, follows the data.

Page 50

Java Proxy Server

Appendix D: Comparing the Performance of JLex
and a hand written parser

JLex Parser

The main body of the trial parser, that was written using JLex is listed below. The full

listing for the JLex test is in jlex/, and the manual parser test is in link_extract_test/.

<YYINITIAL> "<" { yybegin(STATE1); }
<YYINITIAL> {WHITE_SPACE}+ { }
<YYINITIAL> . { }

<STATE1> {WHITE_SPACE}+ { }
<STATE1> [Aa] { yybegin(STATE2); }
<STATE1> . { yybegin(STATE6); }

<STATE2> {WHITE_SPACE}+ { }
<STATE2> ({H}{R}{E}{F}) { yybegin(STATE3); }
<STATE2> . { yybegin(STATE6); }

<STATE3> {WHITE_SPACE}+ { }
<STATE3> "=" { yybegin(STATE4); }

<STATE4> {WHITE_SPACE}+ { }
<STATE4> "\"" { yybegin(STATE5); }

<STATE5> ({ALPHA}|{DIGIT}|{WHITE_SPACE}|{PUCTUATION})+ { return new Yytoken(yytext());
}
<STATE5> "\"" { yybegin(STATE6); }

<STATE6> ">" { yybegin(YYINITIAL); }
<STATE6> {WHITE_SPACE}+ { }
<STATE6> . { }

Performance Comparison

A test was done by parsing a reasonably simple HTML file, with 22 links in it, as well as

some links that should be parsed out. An average was taken of eight runs.

JLex: 328, 330, 330, 323, 328, 328, 324, 324 Average = 326.8 ms

Hand written: 266, 265, 251, 334, 264, 284, 300, 269 Average = 279.1 ms

Conclusion

The hand written parser is marginally faster.

Page 51

Java Proxy Server

Appendix E: Users Guide

Environment

This program is written in Java and so requires a JRE (Java Runtime Environment) to

run14. The specific requirements of this are;-

� Swing 1.0.3 (or greater)

� JDK 1.1.6 or 1.1.7

� Can use native or green threads (Better performance with native)

� Not JDK 1.2

You can download JREs for Microsoft’s and Sun’s operating systems from

www.java.sun.com, and the JRE for Linux can be found at www.blackdown.org.

Swing can be downloaded from Sun’s Java web site as well. Once downloaded it needs to

be set-up so that the JRE can find it. This means that the ’CLASSPATH’ environment

variable includes the swing package.

The Java JDK 1.2 came out while I was doing this project. It includes Swing as default.

However, there are some minor changes between using 1.2 and 1.1.6 so the program will

not run without modification on 1.2.

Compiling

The program can be compiled by Suns javac when in the directory containing the source

Java files, using the command ;-

javac -depend Main.java

This will create a directory called java_proxy that will contain all the byte compiled Class

files. This directory can be zipped up to create a compressed, self-contained package.

14 The full JDK will be needed if you want to compile the program

Page 52

Java Proxy Server

Running

As long as the java_proxy package is in the CLASSPATH the program can be run by;-

java -native java_proxy.Main

The -native switch makes threads use the native system implementation. This improves the

performance of the program.

Setting up you browser

In order for this program to work, all Internet HTTP requests must pass through it. To do

this you must manually setup your browser to use it as a proxy server.

Find the relevant dialog from your browser

preferences and enter into the HTTP proxy server

field ’localhost’ (your computer) and then put in

what ever port you have configured the proxy

server to use.

GUI Description

Straight after the program is run, it puts up a dialog while it

is checking the cache. It checks to see if its table of cache

contents, which it loads from disk, reflects the cached files

on disk.

If no problems are found with the cache then the dialog

automatically closes.

Page 53

Illustration 23: Screen shot of configuring

Netscape Navigator 4

Illustration 24: Dialog that

shows, while cache is being

checked

Java Proxy Server

The program opens a small window with a small footprint, so as not to

intrude on the browser you are using. It can now be used as a proxy

server.

Page 54

Illustration 25:

Main GUI

window

Java Proxy Server

Appendix F: Running the Program from
Birmingham University’s Computer Science
Department

Setting up Swing and Java

On the Birmingham University, Computer Science computers, the set-up can be done for

you by running ’setup Java’ and ’setup Swing’.

Compiling

First change to the directory that contains the source code;-

cd ~rxn/java_proxy/

Then the program can be compiled using;

make javac15

This puts the java_proxy package in a directory compiled.

Running

The program needs to be run from the compiled directory. This contains all the image files

that are used for buttons, the preferences files, and the directory cache that contains all the

cached files.

To go to the compiled directory from the directory containing the Java files type;-

cd compiled

Once there program can be run by ;-

15 Compilation takes about 90 seconds using javac. An alternative that I used during development is a
Java compiler called Jikes. This is available for free from www.ibm.com.

Page 55

Java Proxy Server

java -native java_proxy.Main

(The -native switch makes threads use the native system implementation. This improves

the performance of the program.)

Here is how that looks when I go through the above;-

rxn ~ $ cd java_proxy/

rxn ~/java_proxy $ make javac

javac -d compiled -depend Main.java

Note: 4 files use deprecated APIs. Recompile with "-deprecation" for details.

1 warning

rxn ~/java_proxy $ cd compiled/

rxn ~/java_proxy/compiled $ java -native java_proxy.Main

Page 56

Java Proxy Server

Appendix G: Screen Shots

Screen Shots of HTML Page Responses from Proxy Server to
HTTP Request Errors

Page 57

Illustration 26

Illustration 27

Illustration 28

Illustration 29

Java Proxy Server

Appendix H: Brief Class Descriptions

Global Classes

Log This class is accessed by most of the other classes and provides logging

functions to them. It is a debugging class that controls various files on disk. The various

methods it contains, write out text to the corresponding file.

Util This class is a utility class that contains a few commonly used, simple

functions. It has functions to exit the program on an error, copy data efficiently between

streams etc.

CacheReadInputStream Allow the reading of a cached object through a conventional

input stream. When it is constructed, it locks the URL while it is reading from it. Because

it locks the URL when it is constructed, it’s close method must be called by the owner

when it has finished with it, so the URL can be unlocked.

CacheOutputStream (+ some private classes) This class allows the additon

of a file to the cache. It is constructed around a certain URL, locks the URL, and then it

can be used as a conventional output stream to add data to it. The close method is called

to close it. The internals of this class are complicated because it allows the addition to the

cache of a file of unknown length. In this case the file is buffered into an array. Only when

close is called is the file actually written to disk, because the file size is now know.

Cache Contains lots of methods for manipulating the table of contents, the cache,

and locking URLs.

Page 58

Java Proxy Server

Bibliography

RFCs

BERNERS-LEE, T. "RFC 1866:Hypertext Markup Language-2.0".

BERNERS-LEE, T., FIELDING, R. and FRYSTYK, H. "RFC 1945:Hypertext

Transfer Protocol-HTTP/1.0".

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H. and BERNERS-LEE, T.

"RFC 2068:Hypertext Transfer Protocol-HTTP/1.1".

RIVERST, R. "RFC 1321:The MD5 Message-Digest Algorithm".

Books

LUOTONEN, ARI. "Web Proxy Servers". Prentice Hall, New York. (1998)

EDDY, S.E. "HTML in Plain English". MIS:Press, New York. (1998)

APPEL, A.W. "Modern Compiler Implementation in Java". Cambridge University

Press, Cambridge. (1998)

Papers

WESSELS, D. and CLAFFY, K. "ICP and the Squid Web Cache". National
Laboratory for Applied Network Research, http://www.nlanr.net/wessels/Papers/icp-
squid.ps.gz.

Programmers Reference

UNKNOWN AUTHOR. "GIF98a Specification". Compuserve Incorporated Columbus,
Ohio, http://www.phys.s.u.-tokyo.ac.jp/local/other-faq/gif89a-e.html.

Page 59

Java Proxy Server

References

[1] NetAccelerator2.0 - IMIS, http://www.imisoft.com/

[2] SQUID, Squid Project group, http://squid.nlanr.net/Squid/

[3] WebEarly98 - Goto Software, http://www.webearly.com/

[4] Web Proxy Servers, by Ari Luotonen. Page 107.

[5] CERN httpd is also refered to as W3C httpd as the development moved from CERN to

the W3 Consortium.

[6] JLex: A Lexical Analyzer Generator for Java(TM), by Elliot Berk.

http://www.cs.princeton.edu/~appel/modern/java/JLex/

[7] Java MD5, Santeri Paavolainen, http://www.cs.hut.fi/~santtu/java/

[8] Apache web server, Apache project, http://www.apache.org/.

Page 60

